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A guided edge-aware smoothing-sharpening filter based on patch
interpolation model and generalized Gamma distribution

Guang Deng, Fernando Galetto*, Mukhalad Al-nasrawi, and Waseem Waheed

Smoothing and sharpening are two fundamental image processing operations. The latter is usually related to the former through
the unsharp masking algorithm. In this paper, we develop a new type of filter which performs smoothing or sharpening via a tuning
parameter. The development of the new filter is based on (1) a new Laplacian-based filter formulation which unifies the smoothing
and sharpening operations, (2) a patch interpolation model similar to that used in the guided filter which provides edge-awareness
capability, and (3) the generalized Gamma distribution which is used as the prior for parameter estimation. We have conducted
detailed studies on the properties of two versions of the proposed filter (self-guidance and external guidance). We have also conducted
experiments to demonstrate applications of the proposed filter. In the self-guidance case, we have developed adaptive smoothing and
sharpening algorithms based on texture, depth and blurriness information extracted from an image. Applications include enhancing
human face images, producing shallow depth of field effects, focus-based image enhancement, and seam carving. In the external
guidance case, we have developed new algorithms for combining flash and no-flash images and for enhancing multi-spectral images

using a panchromatic image.

Index Terms—Edge-aware filter, image smoothing, image sharpening, maximum a posteriori estimate.

I. INTRODUCTION

MOOTHING and sharpening are two fundamental
operations in image processing. Traditionally, smoothing
is used to reduce noise, while sharpening is used to enhance
details [1]. In recent years, smoothing has found increasingly
more applications in graphics, computational photography,
and computer vision. Edge-aware smoothing, which preserves
sharp edges of objects, has been actively studied. Well known
edge-aware filters include [2]-[7]. Among them, the guided
filter [3] and its weighted versions [7]-[9] have the advantage
of a low computational complexity of O(N) in addition to
their good performance. Applications of edge-aware filters
include detail enhancement, flash no-flash image denoising,
upsampling of depth map, image abstraction, image dehazing,
tone mapping and contrast enhancement to name a few. These
applications have been studied extensively in the literature.
On the other hand, sharpening is usually achieved through
the unsharp masking algorithm [1]. Let I and S be the
observed image to be processed and the sharpened image,
respectively. The sharpened image is produced by S = [ +~7
where v is called the sharpening gain and Z is the output
of a high-pass filter. The use of a linear filter to produce Z
presents two main disadvantages in some applications: high
sensitivity to noise and halo artifacts due to overshoot in high
contrast regions. Non-linear filters were proposed in [10]-[12]
to reduce the effect of noise but not solving the halo artifacts.
Edge-aware filters are the main tools to combat the halo
effect. In addition, there are many studies on using adaptive
gain to perform content adaptive sharpening. For example, in
[13], a pixel adaptive gain v based on the dynamics of the
image is proposed to sharpen areas of mid-range contrast, to
avoid overshooting in high contrast regions, and to produce
minimal sharpening at smooth regions. Attempts have also
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been made to formulate the adaptive sharpening problem
as an optimization problem [14]. A similar approach was
taken by [15] which used the local blurriness to vary the
sharpening gain «. The main goal is to avoid sharpening the
very smooth background which is intentionally produced by
the photographer to achieve the effect of shallow depth of
field.

Although smoothing and sharpening are related through
Z = I — J, where J is a smoothed version of I, and
edge-aware filters are used to produce J to minimize the
halo effect, these two operations are usually used in different
applications. The main motivation of this work is to develop
a unified framework such that smoothing and sharpening can
be integrated in one filter whose function can be controlled
by varying a parameter. Our aim is to develop a filter with
a tuning parameter such that when it is set smaller/greater
than 1 the filter is smoothing/sharpening. The filter must also
have the edge-awareness property such that it does not blur
edges when used in smoothing mode and does not create
halos when used in sharpening mode. A distinctive advantage
of such formulation is that it allows the user to perform
selective smoothing and sharpening in different areas of an
image to produce results such as smoothing the background
while sharpening the main object. In addition, the unification
of these two operations in one filter allows the user to have a
better control in information fusion applications such as Pan-
sharpening [16] and flash-no-flash imaging [3].

The main contributions of this work and organization of this
paper are summarized in the following.

o A systematic formulation of a new type of filter (section
II-A) based on the Laplacian operator, which unifies
smoothing and sharpening operations in one filter. The
function and level of smoothing or sharpening are
controlled by varying the value of a parameter.

e The development of an edge-aware smoothing-
sharpening filter (section III) based on a patch
interpolation model similar to that of the guided filter.
Parameters of the filter are determined by minimizing
the negative posterior probability. The generalized
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Gamma distribution is used as the prior. The filter
includes the original guided filter as a special case.
Self-guidance and external-guidance versions of the filter
have been developed and their properties are analyzed.
Both versions of the filter are of the same computational
complexity as that of the guided filter.

o We have demonstrated the performance of the proposed
filter in a number of applications in section IV.
Using the self-guided filter, we have developed
adaptive smoothing-sharpening algorithms by extracting
information of texture, depth, and blurriness to adjust
the filter parameter to achieve content-aware processing.
Applications include enhancement of images of human
face, creating the effect of shallow depth of field,
smoothing/sharpening guided by blurriness, and pre-
processing an image to achieve better seam carving
results. Using the filter in external guidance, we have
applied the filter to combine images taken under flash
and no-flash conditions, producing much better results
than those produced by the guided filter. We have applied
the filter to solve the Pan-sharpening [17] problem which
combines information from multi-spectral images with
a panchromatic image. Both subjective and objective
comparison are discussed to validate the applications of
the proposed filter.

II. THE SMOOTHING-SHARPENING FILTER, THE
SELF-GUIDED FILTER, AND MAIN IDEAS OF THIS WORK

In this section, we first present a filter called the smoothing-
sharpening filter in which smoothing and sharpening is
configured through the setting of a parameter. Next, we revisit
the basic idea of the guided filter. We then discuss the main
idea of the proposed edge-aware smoothing-sharpening filter.

A. The smoothing-sharpening filter

We develop a unified framework for combining smoothing
and sharpening into one filter. We first define the filter as

Jn)=1In)+ (1 —-a)Al(n) (1)

where I(n) and J(n) are pixels of the input and output images
at location n, «v is a parameter, and A is the discrete Laplace
operator (which is referred to as the Laplacian operator in rest
of this paper) defined as

Al(n) = u(n) - I(n) @

where p(n) = + > meq, 1(m) is the mean of the image

calculated over a patch centered at location n. The symbol €2,,
represents the set of pixel indices of the patch and N = |Q,,|
is the number of pixels. The particular parameterization of this
filter by 1 — « will become clear in the following discussions.

To demonstrate the characteristics of this filter, we consider
a simple example of a 1-D filter of which the mean is
calculated by an average filter u(n) = %Z:n:_l I(n —m).
The impulse response of the filter stated in (1) is then given
by h(n) = {(1 — a),(1 + 2a),(1 — a)}/3. The frequency
response is calculated as follows
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Fig. 1: Magnitude response of the smoothing-sharpening filter.
When 0 < o < 1, it is a low-pass filter. When « > 1, it is
a high-frequency emphasis filter. When o < 0, the filter’s
function is not well defined.

In Fig. 1, we plot the magnitude response (| H (w)|) of this filter

for three settings of A. We can see that (a) when 0 < a < 1,

it is a low-pass filter, (b) when « > 1, it is a high-frequency

emphasis filter, and (c) when a < 0, the filter’s function is

not well defined and is not considered in this paper.
Substitution of (2) into (1), we have

J(n) = al(n) + (1 = a)u(n) @

which is a weighted average between I(n) and u(n) when
0 < a < 1. It is a low-pass filter. On the other hand, when
« > 1 we can then re-write (4) as

J(n) = p(n) +a(I(n) — p(n)) ®)

Equation (5) is the unsharp masking operation which is a
sharpening filter. The equivalence of (5) and (1) shows that
the filter stated in (1) can be configured as either a smoothing
filter 0 < a < 1 or a sharpening filter o > 1. We can further
re-write the filter stated in (4) in the following equivalent form

J(n) = p(n) — aAI(n) (6)

which is the operation of a local mean minus a scaled local
Laplacian of the signal.

To use this interpretation in the development of the edge-
aware smoothing-sharpening filter, we need to generalize the
concept of Laplacian in the following sense. In its original
form, the Laplacian at a pixel location 7 is defined by (2)
where the patch is centered at location n. The Laplacian can
also be written as

> (I(m) —I(n)) @)

meQ,
which is the average of the difference between the center
pixel I(n) and each pixel I(m) in the patch. Using this
interpretation, we make the following generalization. For any
pixel I(q) at location ¢ € €, the Laplacian is defined as

ATlg) = 3 (I(m) ~ I(q)) ®)
meN,
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This definition of the Laplacian thus generalizes the concept
from the original one which only applies to the center pixel of
the patch to the one which applies to all pixels in the patch.
Although the original meaning of the Laplacian is lost in the
generalization, we will use the same name in this paper to
simplify the terminology. Using this generalization, the filter
can be defined for all pixels in the patch as follows

J(q) = p(n) — alAl(q) )
=al(q) + (1 —a)u(n) (10)

The difference between the two filters defined in (6) and (9)
is that the former is defined for the center pixel of the patch
while the latter is defined for all pixels in the patch. We will
call the new filter (stated in (10)) a patch interpolation model,
because the output is a weighted average of the input and the
patch mean.

When the parameter « is fixed, the filter does not have
an edge-awareness capability. This is a major problem of the
filter. We will show in the next section that the idea of the
guided filter provides a solution to this problem by adaptively
setting the parameter .

B. The self-guided filter

We revisit the basic idea of the guided filter [3]. A square
patch of radius r has N = (27 +1)? pixels. Let €2, represent
the kth patch in which a pixel at location ¢ is denoted I (q)
where g € (), and the subscript k indicates the patch. A linear
model is imposed on each pixel of the patch such that

Ji(q) = axdi(q) + b, (11)

where Ji(q) is the desired output. The two patch dependent
parameters ay, and by are determined by solving a regularized
least squares problem with the following cost function

e= o 3 V(@) — Tula)l* + Sab,

qEy,

(12)

where the second term is the regularization and e is a user
defined parameter. Solving d¢/0b;, = 0, we have by = (1 —
ar)pk where pp = + >_qea, Ik(q) is the patch mean. By
Substitution of this result into (11), we have another patch
model

Ji(q) = ardi(q) + (1 — ax) (13)

which is an interpolation between the pixels in the patch and
the patch mean.

A new regularized least squares problem is obtained by
substitution of (13) into (12) which results in the following
cost function
€

2a§ (14)

2
d= %(ak—l)z—i—

where 0} = + >gean k() — i)? is the patch variance.
Solving dd/day, = 0, we have
2
Tk
= 15
Qg O']% . ( )

Let I(p) represent the pixel to be processed at location
p € Q. It can be shown that the pixel I(p) belongs to N

overlapping patches [3]. Since each patch model produces one
output

Ji(p) = arI(p) + (1 — ap)pik, (16)

there are N modelling results {J;(p)}r=1.n. To aggregate
these results, a weighted average [7], [8] is performed:

N N N
J(p) =Y widi(p) =1(p) > wrar + > wi(l — ax)u
k=1 k=1 k=1

A7)
where Z,ﬁ;l wy = 1. The original guided filter [3] uses the
fixed weight wy, = 1/N.

C. Main idea of the proposed filter

The key to our development is the patch interpolation model
which is stated in (13) and the smooth-sharpening filter stated
in (10). Comparing the two, we can see that they are in a
similar form. There are two key differences.

o In its general form (1), the smoothing-sharpening filter
can be configured as either smoothing or sharpening. It
is not obvious how to set the parameter v such that the
filter has the edge-aware capability.

e On the other hand, in the guided filter case, the
filter parameter ay is specifically determined for edge-
awareness. Referring to (15), for the case ¢ << a,%

which indicates strong texture/edge inside the patch, the

algorithm assigns a — 1 such that Jy(¢) — I(q). For
the case € >> 0,% which indicates a smooth patch, the

algorithm assigns a; — 0 such that Ji(q) — p. As a

result, edge-aware smoothing is achieved. I;Iowever, it is

always a smoothing filter because a; = Ugie <L

Based on the above observations, to develop an edge-aware

smoothing-sharpening filter we should find a generalization

of the guided filter such that it is possible to set a; > 1. We
show in the next section that the development is based on two
key ideas:

1) using the patch interpolation model stated in equation
(13), and

2) using the principle of maximum a posteriori to
determine the parameter ay to overcome the limitation
of ar < 1 in the original guided filter.

III. THE EDGE-AWARE SMOOTHING-SHARPENING FILTER

We first develop the self-guided edge-aware smoothing-
sharpening filter in section III-A. We then develop the
external-guided version of the filter in section III-B.
Implementation and computational complexity of the proposed
filter are discussed in section III-C.

A. The self-guided form and its properties

1) The self-guided smoothing-sharpening filter
We define the linear Gaussian observation model for the
patch data as follows

Ii(q) = Ji(q) +r(q)

where r(q) is a realization of an i.i.d. zero mean Gaussian
random variable with variance 72N (7 > 0). Here we use the

(18)



0J-SP-00091-2020

patch size N = || to parameterize the noise variance such
that the result does not depend on V.

To determine o, we treat it as a random variable and use
the principle of maximum a posteriori. More specifically, using
Bayes rule we can write the negative log-posterior as a cost
function D(«y) by ignoring constants as follows

D(ay) = —log p(ax|{1x(q)})

= —log p({1x(q) }|ow) — log p(au.) (19)

where based on the observation model stated in (18), the
negative log-likelihood for the patch is given by

~logp({Tx(@)} o) = 5y O (Tkla) — Jila))?
qeQy,

o} 2
ﬁ(ak -1)
Compared with the first term of the cost function of the guided
filter stated in (12), the above negative log-likelihood has an
extra parameter 7. We set 7 = 1 in this work which allows us
to include the guided filter as a special case in the proposed
filter.

Substitution of (20) into (19) the cost function can be
written as

(20)

2

D(ay) = %(ak —1)? — log p(ak). 1)

Compared with the cost function of the guided filter, the above
cost function is different in two aspects: (a) the parameter by, is
implicitly defined in the patch interpolation model, and (b) the
regularization term %a% (which is the negative of logarithm
of zero mean Gaussian) is replaced by the negative log-prior
which permits us to develop different filters.

In this work, we consider the generalized Gamma

distribution as the prior:

plag) oc afje™3(r/0)" (22)

where 6 > 0 is a scale parameter. We set h = 2 and n > 0
to control the shape of the distribution. Substituting (22) into
(21) we have the cost function in which constant terms are
omitted

2

D(ay) = %(ak —1)%+ #a% —nlog ay,
We can easily see the motivation and justification of such
settings. When 1 = 0, the cost function is the same as that of
the guided filter with the setting ¢ = 1/6%. When 7 > 0, the
cost function has an extra term —7nlog o, compared with the
cost function of the guided filter. We will show that this extra
term permits the filter to be configured as either a smoothing
filter (0 < ay; < 1) or a sharpening filter (o > 1).

Another justification is mathematical simplicity. The cost
function under this parameter setting is convex leading to a
unique minimum. Indeed, the generalized Gamma distribution
allows us to explore other settings of parameters such as
h # 2. However, for such a setting, the cost function may
not be convex and is difficult to optimize. Therefore, we do
not pursue study in this direction.

We now determine the filter parameter o by minimizing
the cost function D(«y) which is equivalent to maximising

(23)

the posterior. Solving 9D /day, = 0, we obtain the optimal

value
0,% 2 4n
+ s, 1) t =T
Okt g2 Ok T 32
2) Properties

To reveal how the proposed filter generalizes the original
guided filter, we set € = 1/6? such that the guided filter’s
parameter stated in (15) is given by

1 0';%
A = — -
2] oit g

(24)

2 2
Ik Ik
= = 25
ak ol4+e oi+1/6? 25)
Substitution (25) into (24), we have
1 4n
uk:2{ak+‘M%+Uz+e} (26)

We can clearly see that the parameter of the proposed filter
can be expressed as a function of the parameter of the original
guided filter. Their relationship is discussed in the following.
Based on the interpolation model stated in equation (13), we
can prove that the proposed filter can be configured by setting
7 relative to € as follows.

e When 7 < €, we can show that o, < 1 which leads to
a smoothing filter. In an extreme case when 1 = 0, the
proposed filter is reduced to the original guided filter. It
is also interesting to note that for this setting ayg > ay
which means the proposed filter always performs a lower
degree of smoothing than the original guided filter.

o When 1 = €, we can show that o, = 1 which leads to
no filtering.

e When n > €, we can show that a; > 1 which leads to
a sharpening filtering. The sharpening gain is defined as
vr = a — 1 which is an increasing function of 7.

In light of the above discussion and to simplify parameter
settings, we introduce another parameter ~ to replace n by
defining = x /6% = Ke. The parameter of the proposed filter
can be re-written as

ay = % {ak +4/a2 +4k(1 — ak)}
The advantage of this new parameterization is that the filter
can be configured as smoothing by setting 0 < x < 1 and as
sharpening by setting x > 1.

For the smoothing case, we plot «j for different settings
of  including the case with x = 0 which is the guided filter.
Results are shown in Fig. 2. We can see that as « is increased,
oy is less adapted to a,% and is closer to the constant 1 (no
filtering) for o2 > T where T is a signal dependent threshold.

27

Next, we study the sharpening gain v, as a function of &
(k > 1) and the patch variance o7. The interpolation model
can be re-written in a sharpening filter form

k(@) = I(q) + v (Ik(q) — 1)

Fig. 3 shows the sharpening gain as a function of the
patch variance o7 for various settings of x. We can make
the following observations. (a) The sharpening gain is a
decreasing function of the patch variance. This is a desirable

(28)
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Fig. 2: Interpolation weight oy, as a function of patch variance
o? and filter parameter £ under two fixed settings of € (top
e = 0.001, bottom ¢ = 0.01). As « is increased, «y is less
adapted to o7 and is close to the constant 1 for o7 > 7" where
T is a signal dependent threshold.

property of the sharpening filter. It performs a higher degree of
enhancement on a patch of smaller variance which is usually
due to low contrast. (b) The level of enhancement can be
controlled by setting the parameter . A bigger value will lead
to a bigger sharpening gain for the patch of fixed variance.
(c) The parameter € also controls the sharpening gain. For the
same setting of x, a bigger value of ¢ will lead to a bigger
value of the sharpening gain.

B. The guided form and its properties

In this section, we develop a guided version of the proposed
filter by a further generalization of smoothing-sharpening
formulation stated in section (II-A) and the guided filter.

1) The guided smoothing-sharpening formulation and the
guided filter

Referring to the filter formulation stated in (9), we can see
that one of the key components is the Laplacian which is a
second derivative operation and is thus sensitive to noise in the
image /. When a guidance image G, which is assumed to have
a higher signal-to-noise ratio, is available, a generalization
is to replace the Laplacian calculated on I by the Laplacian
calculated on G such that the filter can be written as:

J(q) = pu(n) — aAG(q)

where p(n) is the mean of the patch centered at I(n) and

AG() = 3 (Gm) — C(g))
meQ,

(29)

(30)

Although this idea is technically sound, how to determine
« remains a problem. We will revisit the basic idea of the
original guided filter and show how this problem can be solved

Sharpening gain =

0 0.4 0.8 1.2 1.6 2
Patch Variance o7}

(e = 0.001)

Sharpening gain
S

10 ‘ ‘ ‘ ‘
0 0.4 08 1.2 1.6 2

Patch Variance o7 (e = 0.01)
Fig. 3: The sharpening gain 7, is a decreasing function of the
patch variance o} for various settings of x under two fixed
settings of € (top € = 0.001, bottom € = 0.01). The sharpening
gain -y is bigger for a bigger value of « and is a decreasing
function of the patch variance o7.

by using a similar approach as the development of the self-
guided version of the proposed filter described in the previous
section.

In the original guided filter, the patch model is given by

Ji(q) = arGr(q) + bi (31)

The two parameters aj and by, are determined by minimization
of the cost function over the patch data
. €
{ak, b} = min > [Jelg) = k(@) + 507 (32)
ak,bk - 2
qeEQ
It can be shown that

by, = pg — apvy (33)

where p and vy are the mean for the kth patch of image [
and G, respectively. The parameter ay, is given by
g = Pk
§,§ + €

(34)

where ¢ is the patch variance of G, and ¢y, is the sample
covariance

1
P = Z (Grla) — vi)(Ik(q) — k) (35)
qEQ,
Substituting (33) into (31), we have a new patch model
Ji(q) = pk + ap(Gr(q) — vi) = pr — axAGr(q)  (36)
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where AGi(q) = v — Gi(q) is the generalization of the
Laplacian defined in (8).

Comparing the guided filter model stated in (36) with the
proposed smoothing-sharpening model stated in (29), we can
see that they are similar. Simply put, if we start with the filter
model stated in (29), we will determine the same filter as the
guided filter which is a smoothing filter. In the next section,
we address the problem of how to develop a smoothing-
sharpening guided filter.

2) The proposed guided smoothing-sharpening filter

To use (36) to develop the smoothing and sharpening filter,
we face a new difficulty that a; can be positive or negative.
This is unlike the case for the self-guidance version developed
in section III-A1 where it is always the case aj > 0. Referring
to (34), the sign of a;, is defined by the sign of the covariance
¢y such that

sign(ax) = sign(or) (37)

The role of the sign of the covariance ¢ can be explained as
follows. Because Aly(q) is replaced by AG(q), it requires
that the two patches I}, and G must be correlated. If they are
positively correlated, then it is expected the two Laplacians
are of the same sign. If they are negatively correlated, then
it is expected the two Laplacians are of opposite sign. Thus
a correction of the sign of the Laplacian calculated on the
guidance image is required. The definition of ay, stated in (34)
automatically satisfies this requirement.

In light of the above discussion, we can develop the guided
version of the smoothing-sharpening filter by defining the
guided patch interpolation model as the following

Ji(q) = px + sign(¢r)ar(Gr(q) — vi) (38)

such that oy, is a positive parameter. We can then follow the
same procedure as that presented in section III-Al for the
development. More specifically, the negative log-likelihood is

~logp({la)Haw) = 5 3 (Iula) = Ji(@)?
qEQy,
Sk o

5(116 - |(/)k|04k

where we have set 7 = 1 as before. Using the same
generalized Gamma distribution as the prior, we obtain the
negative log-posterior as the cost function D(ay)

(39)

D(ow) = —log p({Jk(q)}ax) — log p(a)
2
S 1
= gkai — |br|ag + 202 o —nlogay (40)

We also follow the same parameter settings of the self-guided
form by letting € = 1/6% and 1 = re. Solving D /Dy, = 0
and re-arranging the results, we have

2
4dke
+ ( |2¢k| ) T
S T € S T €
3) Properties

We can clearly see that when G = I, we have ¢f =
¢ = oi. The guided version of the proposed filter stated
by (42) reduces to its self-guided version stated by (26). The
relationship between the proposed filter and original guided

o = L] 104l
KT §]3+6

(41)

filter can be revealed by substitution of (34) into (41), which
results in the following

1 lag| + 2 4ke
ap = —< |a a -
k 2 k k §,§+e

We can also see that a, > |ay| from (42). The original guided
filter is a special case of the proposed filter when x = 0
leading to ay = |ag|.

Next we discuss under what parameter setting the filter is
smoothing or sharpening. The analysis presented in section
II-A can not be used, because the Laplacian is calculated
on the guidance image rather than on the image to be
processed. The following analysis is based on an observation
that a smoothing filter will reduce the patch variance while
a sharpening filter will increase the patch variance. It is also
assumed that the patch mean is not changed by the filter. This
is a reasonable assumption because smoothing and sharpening
usually do not change the average brightness of the image.

To make the discussion easy to follow, we first define the
patch variance for the three images as

(42)

1
Original image : a,% = N Z (Ix(q) — ﬂk)z (43)
qEQ,
. 1
Guided image : ¢7 = v Z (Gr(q) —w)?  (44)
qEQ
1
Filtered image : 77 = N Z (Je(g) — pe)*  (45)
qEQ

In equation (45), we substitute Ji(¢) by the patch interpolation
model stated in (38) and use the definition stated in (44), we
obtain

7',3 = oz%.g,f (46)

Next we identify parameter settings that lead to reduced
variance, i.e., T,f / o,ﬁ < 1 for smoothing or increased variance,
ie., 77 /o7 > 1 for sharpening. It can be shown that

2 ~2
Ti; ke,

1455 dke
2%{ ' +a§pi<}3}+

2
where ¢ = ﬁ and py (|px| < 1) is the cross correlation
coefficient of the two patches defined as

O
OSk
where ¢, is the sample covariance between the corresponding
patches of the original and guided images. It is defined in
equation (35).

In a special case in which k = 0 leading to the original
guided filter, we have the following results

2 2
ok ] <1
Sk +€
This means that the original guided filter is always a
smoothing filter.

However, there is a highly non-linear relationship between
the ratio 72 /0 and the two filter parameters  and e for the
two patches in I and G where the variances (o} and c7) and

47

P = (48)

2
T
2 (49)

=&%=&[
k
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correlation coefficients (pi) can be calculated. In theory, we
can calculate the required parameter settings such that for two
given patches the ratio is greater than one or less than one. But
doing so adds considerable computation burden in practice. A
practical approach is to let the user set the two parameters such
that the desirable result is produced. In this regard, we can see
that the ratio 77/ O'k is an increasing function of 7. For the

case where € and o7 are fixed, increasing x will i increase the
ratio and the patch is more likely to be sharpened (or less
smoothed). For the case where x and ¢ are fixed, a patch with
a larger/smaller value of variance is less/more likely to be
sharpened. This is a desirable feature because more sharpening
should be applied to areas of less variance.

C. Implementation and computational complexity

The implementation is similar to that of the original guided
filter. For each patch, we calculate the parameter oy using
either (27) for the self-guided version or (41) for the guided
version. We then perform the weighted average operation.
More specifically, for the self-guided version, the filter output
is given by

N N
J(p) =1(p) Y wion + > wi(l — o)

(50)
k=1 k=1
For the guided version, the filter output is given by
N N
P) Y wiBe+ > wilik — Brvk) 51
k=1 k=1

where f) = sign(¢r )y and ay is given by (34).
We calculate the weight for the self-guided and the guided
case as follows

Ck

— (52)
1+ (0}/(s5%))

Wy =

and

Ck
1+ (s7/(s52))?

where ¢, is a normalization factor to ensure Zszl wg =1, s
is a user defined scale parameter, 52 and &2 are the average
of 02 and ¢} over the whole image.

The proposed guided smoothing-sharpening filter can
be implemented in MATLAB of which the code is
shown in Appendix. The self-guided version has a similar
implementation. We assume the four parameters are given:
patch radius (r), Kappa (k), Epsilon (€), and Scale (s). We
can see from the brute-force implementation that the proposed
filter has an O(N) complexity which is the same as that of
the original guided filter. It can be implemented by using 7
linear filters.

For color images, we can process each color component
individually. Alternatively, we can convert the image from
RGB to HSV color space. Filtering is performed on the value
channel. The processing result is then combined with the hue
and saturation channels and is converted back to RGB.

wy = (53)

IV. APPLICATIONS EXAMPLES

There are two purposes of this section: validation (section
IV-A) of the theoretical analysis of the proposed filter,
and demonstration of successful applications in (a) adaptive
smoothing and sharpening (section IV-B) based on extracted
information of texture, depth and blurriness, and (b)
information fusion (section IV-C) for denoising and creating
high resolution multi-spectral images.

A. Effects of parameter settings for the self-guidance case

We demonstrate the properties of the filter and confirm the
theoretical analysis presented in section III-A2. The proposed
filter has 3 user defined parameters: (a) The patch radius 7, (b)
the sharpening/smoothing gain x, and (c) the regularization
parameter e. In this section we study the effect of these
parameters on the processed image.

In Fig. 4 we demonstrate the effect of varying s by keeping
the rest of the parameters fixed. Fig. 4a and 4b show the effect
of smoothing when 0 < £ < 1. Smaller « values increase the
smoothing level on the result image. Fig. 4d and 4e show the
effect of sharpening when x > 1. Larger x values produce
a sharper result. The image shown in Fig. 4c is produced by
setting k = 1. We can verify that it is exactly as the original
image. Thus when x = 1 the filter produces no smoothing or
sharpening effect.

Next, we study the effect of patch size and e for sharpening
and smoothing separately. To set the filter in smoothing mode
we set a fixed x = 1072, In Fig. 5 the results are organized
in such a way that the radius varies from 5 to 10 column-
wise while ¢ varies from 1072 to 1 row-wise. Results shown
in this figure clearly show the edge preserving capabilities of
the filter in smooth mode. Setting a larger € value produces
a more washed out result, while increasing the radius of the
filter also produces a stronger smoothing result.

The results shown in Fig. 6 are obtained by setting x = 20
to demonstrate the sharpening effects as a function of different
e and r values. These results confirm that the sharpening gain
increases with the increase in € as previously stated in Fig.
3. Increasing the radius impacts the variance for each pixel
position. As a result, it produces a change in the sharpening
gain.

B. Application in adaptive smoothing-sharpening

As mentioned in the previous section, the value of «
controls the sharpening/smoothing gain of the proposed filter,
in this section we propose three pixel-adaptive smoothing
and sharpening algorithms by defining x as a non-linear
transformation of a feature map such as depth, blurriness or
texture.

The non-linear transformation used in this paper is simply
a variation of the Gompertz! function which is a sigmoid
function. It is defined as:

g(t) = ae™ (54

Thttps://en.wikipedia.org/wiki/Gompertz_function



0J-SP-00091-2020

(a) k =0.01

(b) k =0.1

k=1

dr=5 (k=175

Fig. 4: Effect of varying x for settings r = 11,e = 0.01, scale = 1. (a) and (b) Smoothing (0 < s < 1). (c) Original image
(k = 1, no filtering). (d) and (e) Sharpening (x > 1).

e)r=5e=1 ®r=10,e=1

Fig. 5: Effect of varying € and r in smoothing mode for fixed
settings of x = 1072 and scale = 0.25.

where a, b and c are three parameters. Let us consider ¢ (¢ €
[0,1]) as a feature map extracted from the input image, the
parameter of the proposed filter  is defined as:

—0.69xec(t—t0) (55)

R = (K:maz - Hmin)e + Kmin

where K, and Kp,q, are the minimum and the maximum
values that the gain x will take, c is the growth rate of the
transformation and ¢y is the value of t that produces x; =
(Hmaz - K/mzn)/2

We show an example of the non-linear transformation
in Fig. 7, where there are two well defined areas in the

i \
! \

(e) r=5,e =100 ) r =10,e = 100

Fig. 6: Effect of varying € and r in sharpening mode for fixed
settings of x = 20 and scale = 1.

function: the smoothing region where the K, < & < 1
and the sharpening region where 1 < k < Kyuq,. We can
control the level of smoothing or sharpening by changing the
values of Kpin and Kpae. Setting Ky, = 1 will cancel
the smoothing effect also setting k.., = 1 will cancel or
not produce any sharpening on the image. In the following
subsections we produce content adaptive « by using the non-
linear transformation on feature maps.

1) Texture guided smoothing and sharpening of face
images

A challenge in sharpening portraits by a non-adaptive
unsharp masking algorithm is that undesirable effect on
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Fig. 7: Non-linear transformation, using K,,in, = 0.5, Kinaz =
1.5,¢=10,t, = 0.3

skin regions is usually produced. Examples are shown in
Figures 8(b) and 9(g,h) in which the skin part of the image
is sharpened. To solve this problem, we first estimate a
binary skin map using one of the many algorithms for skin
segmentation, e.g., [18]-[20]. We then transform the binary
skin map by using the non-linear transformation in (55) to
obtain pixel-adaptive x, which is used in the proposed filter
to sharpen non-skin regions only while gently smoothing the
skin region to produce a notable face enhancement.

In Fig. 8 we compare the result of the proposed method
against the popular unsharp masking (UM). UM algorithm has
a fixed gain () to amplify the high frequency components
of the image. It can be seen that our method produces a
more aesthetically pleasing result in skin region while still
sharpening the non-skin region.

In Fig. 9 we compare our method with other state-of-the-
art sharpening methods such as generalized unsharp masking
(GUM) [21], unsharp masking [1] and contrast adaptive
sharpening (CAS)?. Our filter produces a more natural and
aesthetically appealing effect on the image than UM and its
performance is similar to GUM and CAS.

2) Depth guided smoothing for shallow depth of field

Modern mobile phones can have multiple high resolution
cameras to capture high quality images which can be used to
estimate the depth map of a scene. We combine this capability
and the proposed algorithm to produce a shallow depth of
field (SDoF) effect which is frequently used to emphasize the
main object. Traditionally, SDoF effect is achieved by using
a lens with a large aperture in a SLR camera. The proposed
algorithm of pixel-adaptive smoothing and sharpening can be
used as post-processing tool to create the SDoF effect. The
idea is to obtain the depth map from the phone and perform
the non-linear transformation to determine x which is used in
the filtering process. In this experiment, we used a Samsung
Galaxy Note 9 phone in live focus mode to capture the image
and depth map information. We note that methods such as
[22], [23] can be used to estimate the depth map from a single
image if only one camera is available.

The depth map D is a gray-scale image with values in the
range [0,1]. A closer object in the scene has a smaller D value.
So the feature map is defined as ¢t = 1 — D. Applying the non-

Zhttps://www.amd.com/en/technologies/radeon-software-fidelityfx

linear transformation, the depth information is mapped to «
which is a decreasing function of D leading to progressively
smoothing effect as the distance increases. At the same time
the closer objects are sharpened to correct slight out of focus
or blur.

In Fig. 10 and Fig. 11 we show two different results where
the foreground is sharpened and the background is smoothed
to produce the SDoF effect. We can see that the background
is smoothed with a natural appearance to simulate the defocus
blur, also the foreground is sharpened reducing the blur due
to movement in Fig. 10 and out of focus in Fig. 11.

3) Content-aware seam carving

We present an application of the background smoothing
algorithm detailed in previous section as a pre-processing step
for seam carving. Seam carving was introduced in [24] as an
effective tool for resizing an image without significant change
to main objects. The idea is to delete pixels of unimportant
details in an image. The importance of a pixel is measured by
a function of gradient. A natural image often contains details
such as trees, sand, grass which are usually less important
compared to the object of interest such as human. However,
a direct application of gradient-based seam-carving may lead
to unsatisfactory results. An example is shown in Fig. 12b. A
solution to this problem is to use content-aware image resizing.
To avoid elimination of information in foreground, we pre-
process the input image by using the proposed SDoF algorithm
which not only smooths out details in the background but also
emphasizes the object of interest by sharpening it. Results are
shown in Fig. 12d which shows that after SDoF filtering the
seams are not running over the boy’s face. As a result, the
seam-carving algorithm produces a better output image.

4) Blurriness guided sharpening and smoothing

When an object in a scene is outside the focal plane it
is defocused with a blur level directly proportional to the
distance from the focal plane [25]. Due to the limited depth
of field intrinsic in most optical systems, the defocus blur is
present in most of images. When the depth information is
not available, the defocus blur becomes the simplest depth
cue in an image [26] and it is widely used by photographers
to make the main object of the scene to stand out from the
background. Sometimes, due to wrong focal settings, images
need to be sharpened or deblured to achieve a more pleasant
result.

When an image has defocus blur present, the sharpening
process becomes a challenge. Sharpening highly defocused
regions produces artifacts and sharpening in focus regions can
lead to over-sharpening. To tackle these problems we propose
a method by sharpening and smoothing an image adaptively
using the defocus-blur map to compute a spatially varying
+x map. The key behind the success of our method is the
estimation of the defocus-blur map.

Methods have been developed to estimate the defocus-blur
map. Some of the methods use multiple images or special
hardware [27]-[29] while others use a single image. These
methods fall into two main categories. The first one is the
traditional image processing methods such as [30], [31] which
perform a frequency domain analysis to estimate the defocus-
blur map or [32], [33] which use changes in gradient to
estimate the blur level at edges and then interpolate those level
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(a) Original image

(b) Unsharp masking

(c) Proposed filter

Fig. 8: Face enhancement results. (a) Original image. (b) UM (v = 1.1). (c¢) The proposed filter (r = 3,e = 0.01, Njte, =
1, Kmaz = 9, Kmin = 0.1). The proposed method does not sharpen skin regions producing more aesthetically pleasing result.

(b)

0

Fig. 9: Face enhancement. (a, b) Original images. (c, d) CAS results. (e,f) GUM results. (g,h) UM results. (i,j) Proposed filter

results.

to the rest of the image using a matting algorithm. The second
one is the machine learning based methods such as [34] which
uses an end-to-end CNN to estimate the defocus map and [35]
which estimates the blur map by using a regression tree field
(RTF) model.

In this work we use entropy, which is a measure of pixel
variation in a local area, as an indicator for the defocus.
The defocus-blur map D at a pixel location is defined as
the entropy of a patch centered at that particular pixel. The
map is then refined by using the guided filter [3] which
uses the original image as the guidance. The refined defocus-
blur map is non-linearly transformed by equation (54) to

obtain the desired x map. The proposed filter with the pixel-
adaptive r is applied to the image. The result is adaptive
smoothing-sharpening based on the local entropy information
as a measure of defocus-blur.

In Fig. 13 we first show an image which contains different
levels of focal blur. The boy’s face (image (a)) is in focus while
the background is slightly out of focus. The refined entropy
map (image (b)) is produced by the MATLAB function
entropyfilt with a window size of 33x33 pixels and the
result is refined by using guided filter [3] (r = 32,e = 0.01).
The x map is shown in image (c).

In the second row of Fig. 13 we show 3 different results.
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© (d)
Fig. 10: Shallow depth of field (SDoF) effect. (a,b) Original

image. (c,d) SDoF using the proposed filter (r = 3,¢ =
10, Niter = 1,Kmax = 2,Kmin = 0). Our filter not only
smooths the background, it also sharpens the object to correct
small movements and out of focus.

Image (d) is the result of smoothing areas with some degrees
of focal blur. The background is successfully blurred while the
boy’s face remains sharp leading to a pleasing SDoF effect.
Image (e) is the result of sharpening the out-of-focus regions
to increase the depth of field. The background appears sharper
producing the sensation that the scene’s depth is slightly larger
than the original. In both cases, the boy’s face which is in
focus, is not changed (achieved by setting x = 1). However,
we should point out that the proposed filter can be easily
configured to sharpen the in-focus objects by adjusting the
parameters of the non-linear transformation. As a comparison,
image (f) shows the effect of sharpening with a fixed x value
for the whole image, leading to an image of non natural
appearance.

To further demonstrate the advantage of the proposed
smoothing-sharpening filter, we compare results from the
gradient domain guided filter (GDGF) [9], the weighted
guided filter (WGF) [8], and the side window guided filter
(SWGF?) [36]. We tune parameters of these 3 filters such
that the background is maximally smoothed while preserving
information of the face shown in Fig. 13(a) as much as

3https://github.com/YuanhaoGong/Side WindowFilter

© (d)
Fig. 11: Shallow depth of field (SDoF). (a,b) Original image.
(c, d) SDof using the proposed filter (r = 1,e = 100, N;ter =
10, Kmaz = 2, Kmin = 0). Our filter not only smooths the
background, it also sharpens the object.

possible. Results are shown in Fig. 14 which clearly shows
that the proposed filter has the best capability for blurring
the background while preserving the information of the face
which is almost unchanged. On the other hand, both GDGF
and WGF can blur the background to some extend at the cost
of smoothing the face. For the SWGF, we have to choose a
relatively small patch size to prevent the face being overly
smoothed. As a result, there is little effect on smoothing the
background.

C. External guided smoothing and sharpening

1) Flash/no-flash sharpening

In this section we demonstrate another application of
the proposed filter where guided smoothing and sharpening
is required. For example, a picture taken under low light
condition contains a high level of noise due to the use of
high ISO setting. One of the successful applications of the
original guided filter [3] is in processing images captured
under low light condition without using the flash. One such
image is shown in Fig. 15a. The idea is to use another image
captured with flash-on as a guidance to enhance the one
without flash. In the original implementation, the guided filter
with parameters » = 8 and € = 0.004 are used. Result is
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(a) (b)

(c) (@

Fig. 12: Seam carving results. (a) Original image and seams to be removed. (b) Removed seams in (a). (c) Image after
background smoothing and seam to be removed. (d) Removed seams in (c). The proposed background filter leads to a better

result.

(d) Blurring defocused regions

(b) Entropy map

(e) Sharpening defocused regions

(f) Sharpening with a fixed

Fig. 13: Sharpening/smoothing guided by defocus. (a) Original image. (b) Refined entropy map. (c) x map. (d) Result of
blurring defocused regions to produce a shallow depth of field. (e) Sharpening defocused regions to increase the depth of field.

(f) Sharpening the whole image with a fixed .

shown in Fig. 15(c), where we can see that noise has been
greatly reduced while the color information is preserved. This
is however at the cost of loss of details, e.g., details on the
wall and on the vases. This is evident when we compare the
result with the guidance image (with-flash).

To tackle this problem, we first apply the guided filter in
an iterative manner. We represent the filter operation as J =
GF(I,G) where GF denotes the guided filter. The iteration
is performed as: J(® = I and J = GF(J~1,G). Using
the parameter settings r» = 25 and ¢ = 1075, we perform 10
iterations and show the result in Fig. 15(d). Comparing the
original GF result with the iterative GF result, we can see that
the latter has retained more details of the original scene than

the former.

Next, we test the proposed guided smoothing-sharpening
filter in the same iterative way, i.e., same parameter settings
with 10 iterations. The proposed filter has two extra
parameters: ~ and the scale s. For simplicity, we set s = 1
and £ = 10 and 100 to study the sharpening effect. Results
in Fig. 15(e) and (f) which show that the proposed filter does
indeed produce sharper results than the iterative GF. To make
a quantitative comparison, we calculate the total variation of
the image. The total variation for image I is defined as

ST N2 m)) + 119 ()]

ce{R,G,B} n

TV(I) = (56)
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(c) WGF [8]

(d) SWGF [36]

Fig. 14: Background smoothing. Comparison with other
guided filters (a) Proposed method (same as Fig.13(d)). (b)
GDGEF [9] (r = 7,e = 0.01). (¢) WGF [8] (r = 7, = 0.001)
(d) SWGEF [36] (r = 3, Njter = 3).

TABLE I: The total variation of the image produced by
the proposed iterative smoothing-sharpening filter. It is an
increasing function of x indicating the image appear to be
sharper by using a larger setting of .

K 0 10 50 100
TV(x10%) | 1.13 | 1.33 | 1.56 | 1.77

200
2.09

where 189 (n) / I{”(n) is the first derivative of the image
along the horizontal/vertical direction at location n and the
superscript ¢ is used to indicate the color channel. Since
the total variation is the sum of absolute values of the first
derivative, we can use it as an indication of the sharpness of
the image in this application. The total variations for different
settings of x are shown in Table I, where x = 0 corresponds
to the iterative guided filter. We can see that the sharpness of
the image is indeed an increasing function of .

Another issue is related to the number of iterations. In
general, for x > 1, more iterations tend to produce a
higher degree of sharpening effect. How to set the number
of iterations is application dependent and it can be a user
specified parameter. For the image shown in Fig. 15, we
empirically found that between 5 to 10 iterations and a setting
of 10 < k < 100 result in visually pleasing images.

2) Pan-sharpening

Multi spectral (MS) images usually have low spatial
resolution but are rich in spectral information. On the other
hand panchromatic images (called PAN images) have low
spectral resolution but have high spatial resolution. For
example, the IKONOS and QuickBird imaging sensors capture
a PAN image with a spatial resolution of 1 and 0.6 m
respectively and a MS image with a spatial resolution of 4
and 2.6 m respectively [37]. Pan-sharpening is a technique
that combines information of MS images with PAN images
to produce a high spatial resolution image with large spectral
information. Pan-sharpening is a useful tool in many remote

(a) Without-flash

(b) With-flash
L.

gi

1

(c) Original F result

(d) Tterative GF result
T Y

(e) Proposed result x = 10 (f) Proposed result k = 100

Fig. 15: Flash/no flash sharpening. (a) Image without flash. (b)
Image with flash. (c) GF (r = 8, ¢ = 0.004). (d) Iterative GF
(r = 25,¢ = 1075, N;;., = 10). (e) The proposed filter (r =
25,¢ = 1076, Nytep = 10,5 = 1,k = 10). (f) The proposed
filter (r = 25,¢ = 1075, Ny = 10,5 = 1, K = 100).

sensing applications.

Pan-sharpening techniques have been continuously
developed over the years. Some frequently used techniques
include: Brovery transform (BT) [37], intensity-hue-saturation
(IHS) [38], principal component analysis (PCA) [16], wavelet
transform (WT) [39], [41], guided filter based methods such
as [17], [42], and P+XS [40]. We use some of these methods
to compare with the result of the proposed algorithm.

The proposed method consists of 3 steps similar to the GF-
based approach [17]. The MS image is first up-sampled using
nearest neighbor interpolation. The result is then processed by
the proposed filter which uses the PAN image as a guidance
to transfer the high spatial resolution information from the
guidance image to the low resolution MS image. The last step
is a histogram matching on the result image using the original
MS image as a reference.

Fig. 16a and Fig. 16b show the up-sampled MS image and
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(b) PAN image

(e) IHS [38], ERGAS = 6.77

(a) MS image

(d) BT [37], ERGAS = 30.25

(g) WT [39], ERGAS = 4.64

(h) GF [17], ERGAS = 5.83

(c) Proposed, ERGAS = 6.53

(f) PCA [16], ERGAS = 8.78

(i) P+XS [40], ERGAS = 5.58

Fig. 16: Pan-sharpening results and comparison with other methods. (a) Original low resolution multi spectral image. (b) High
resolution panchromatic image. (c) Proposed filter. (d) to (i) Other state of the art methods. The proposed filter successfully
transfers the details from the high spatial resolution panchromatic image to the up-sampled multi spectral image while preserving

the spectral resolution.

the PAN images respectively. The images are from United
States Geological Survey database*. Fig. 16c shows the output
of the proposed algorithm using » = 1l,e = 0.1,k =
1.2, scale = 0.5, the details of the PAN image are successfully
transferred to the up-sampled MS image and the spectral
resolution is preserved. In the second and third rows of Fig. 16
we present the results of the Pan-sharpening process using BT,
IHS, PCA, WT, GF and P+XS algorithms. We can observe
that our method produces sharp and high contrast results with
large spatial and spectral information.

We use ERGAS [43] to quantify the quality of a Pan-
sharpened image. ERGAS is a metric that calculates the
spectral distortion. Ideally, its value should be zero. The
ERGAS values for results produced by different methods are
shown in the caption of Fig. 16. We can see that the result
of the proposed filter is of about the same quality as those
produced by state-of-the-art methods. Thus, the proposed filter
is a new tool for Pan-sharpening with the ability to perform
pixel-wise sharpening or smoothing.

“https://earthexplorer.usgs.gov/

V. CONCLUSIONS

Smoothing and sharpening are two fundamental operations
in image processing. They are usually related through the
unsharp masking algorithm. In this paper, we have developed
a new filter which can perform smoothing and sharpening
depending on the setting of a parameter . The filter is a
smoothing filter or a sharpening filter when 0 < k < 1 or
k > 1. The systematic unification of these two operations
in one filter is based on (a) a new Laplacian based filter
formulation which unifies the smoothing and sharpening
operations, (b) a patch interpolation model similar to the
guided filter which provides the edge-awareness capability,
and (c) the generalized Gamma distribution as the prior for
parameter estimation. As a result the filter allows pixel-
adaptive image smoothing/sharpening by adapting ~ to local
characteristics such as texture, depth, and blurriness. Based
on the patch interpolation model, the proposed filter uses
the guidance information in two ways. In self-guidance the
proposed filter uses information of the image to be processed
and has the ability to use other information to adapt x. In
external-guidance, the filter is similar to the guided filter,
but has an extra ability of adaptive smoothing-sharpening. In
addition, the proposed filter has the desirable edge-awareness



0J-SP-00091-2020

property which retains sharp edges in smoothing and does not
suffer from the halo effect in sharpening.

Using the filter in self-guidance we have developed adaptive
smoothing-sharpening algorithms based on information of
texture, depth and blurriness to enhance human face images, to
create the effect of shallow depth of field, to perform adaptive
processing based on local blurriness, and to pre-process an
image to achieve better seam carving results. Using the filter
in external guidance, we have combined images of under
flash and no-flash conditions, producing much better results
than those produced by using the guided filter. We have also
demonstrated the successful application of the filter to solve
the Pan-sharpening problem which combines information from
multi-spectral images with a panchromatic image.

APPENDIX

A Dbrute-force implementation of the proposed filter in
MATLAB is presented as the following code. We assume
parameters such as: patch radius (r), Kappa (x), Epsilon (¢),
and Scale (s), are provided by the user.

pad=’ symmetric’;

N=(2*r+1)"2;

h=ones (2xr+1) /N;

%patch mean of I

mu=imfilter (I,h,pad);

%$patch mean of G

nu=imfilter (G, h,pad);

%$patch cov

phi=imfilter (I.+G,h,pad)-mu.x*nu;

$patch var of G

vS=imfilter (G.*G, h,pad)—nu.*nu;

a=phi./ (vS+Epsilon);

Beta=(a+sign(phi) .*sqgrt (a.”2+4xkappa. ..
*Epsilon./ (vS+Epsilon)))/2;

$weight calculation

w=vS./ (sxmean(vS(:)));

w=1./(1l+w."2);

nor=imfilter (w,h,pad);

$final output

A=imfilter (Beta.xw,h,pad);

B=imfilter ((mu-Beta.*nu) .*w,h,pad);

J=(G.xA+B) ./nor;
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